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KINETIOS OF SURFACE CHEMICAL REACTIONS

I. REACTION PROPAGATION FROM A PLANE
 SURFACE )

- USSR -

[Following is a translation of the arti-
cle entitled "Kinetika topokhimicheskikh

- reaktsiy I. Raspostraneniye reaktsii
ot ploskoy poverkhnosti" (English version
above) by O, M, Todes ard R. I. Bogutskiy

5- in Zhurnal Eksperimental'noy i Teoretiches- :
o . koy Fiziki (Journal of Fxperimental and
- -~ Theoretical Physics), Vel 11, No 1, Mos-

~. cow, 1941, pages 133-140.7 . . ;

E Contents: 1. Formulation of the problem and o
;fundamentEI designations. -- 2. Kinetic equations of the
iprocess. = A. Free growth of separate zones. -- B,
‘Formation of the front. -—- C. Linear velocity of the pro-
- :pagation of transformation. -- D. Complete form of curves
;%2) and (3). =- E, Position and magnitude of the maximum'
velocity for the general case. —- 3. Experimental deter-

‘mination of 4, B,, and &.

1., Fbrmulatioﬁ of the problem and fundamental :
designations. , ' "'"f“"“f‘fv L

; . We are going to investigate surface chemical reac-:
"tions in solids, which do not take place simultaneously
' everywhere in the system, but begin in separate points of:
:the solid, and from there spread throughout. The creation
.of "seeds" of "initiation centers" of a similar reaction ;
‘may, as a function of conditions, take place in the inter-
‘ior, or on the surface of the solid, on the edges, ridges,
‘‘or angles of the crystals. ; :
: The similar surface chemical reactions comprise: |

[ SRR © s m e — e e e e s




N

‘1) the trensformat ion of one Colla phaee 1n o another —

i recrystallization, spd L) the transforpation of one solid
body intc another with the simultaneous evolution of a .
| gaseous product, as is evidenced, for axample, in thecase
of the decomp051tlen of narbonateq. :

‘ The theoretical aunslysis of the klneticq Of 51m11-;
‘ar reactions which ars started on the crystal surface has

| encountered considerable difficulties srising from the
fact, that the transformation zones which spread from the

varlous "initiation centers™ do not grow freely, but run

-across one arother according to the conditions of the in-

'@ividusl case. In the studies of Bradley, Colvin and . | .

Hume (1), Roginsky (2), Ismailow (3), and Yercfeyev 4y, | .

tﬁerefore, oriy. senarate and individuzl cases were 1rvest—

‘1gated -= %the beglnnino or the ernd of the process.

The example where the seeds of the new phase are
ﬁformed in the iaterior of the orlglnal phaee 3, actording
‘to the reguirements of the case, but thereaf ter grow unti]
lmutual saturation was “acenuly analyzed by Kolmogorov (5),
iand also by Johnson and Mehl (6) by some different methods.

‘The conclusions of thess suthors represent some modifica-:

‘thP 0f & new method, which as far as we Rnow was first
;suggested by Clausius &aflng his de term;nutzon of the laws
éof the partiticn of the fres path.

. We have zcc ﬂ*ted Clausins'® method in the case of
xchemical reactions or phase transformations initiated on
ithe surfece of the solid. In this work we shall confine
‘ourselves to the case of the v¢dne sur$sce, i.e., to part-
‘1cles of Vﬂrs large dipensings. ae reaction kinetics |-
‘for partviclies of ordinery dimens 1onsﬁ whose surface has a:
‘curvature different from "eLQ,»mev be ﬁerlved in a 31m11ar
‘way.

; e results of the latter inves ,aflcn W?il be pub—,
‘lighed by us saﬂa‘"*ciw. .
P Fsr the analysis of the kinetics of the process for
tinfinitely lamge vafusﬂles, we will assume theb from every
‘eenter or the surface there spreads into the interior of
.the solid a spherical front of the process with a constant
‘linear ve lonlty,i.cm/sec. The initiation centers of trans~
sformation may: 1) slready at the very beginning of the
pvocess be found spread over the surface ¢f the body at
an average density n per unit area, or 2) these centers .
‘are created as a funttion of time with sn initial probabll—
ity e perunit ares per unit time interval. HNsturally,
‘a more complicated case is also possible, such that the
‘transformation centers appear already on the surface pars-
ially formed as a function of time.

At th uegLﬂnlna of the nroﬂews, tne transformatlon
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zones are unifeormly growing heamisoneres. Ag Time goes

on, these zores bepin to interpenetrate one another, thus
strongly complicating the kinetics of the process and its
calculation. Fventuazliy, after a sufficiently long period
of time, all the sepsrate zones werge and form one front
of propazation of tran&frrmatwon, which travels in a
direction rervendicular tg the surface of the uOlld with
the same linear velocluy o

The mathematical analV315 of the Llretlcs of the
initisl period -- the period of free zone growth -- does
not present partlcular difficulties. Depencding on the
nature of threse initiation centers (a = O, n_ £ O, or
n, = 0, a £ 0) we obtain the yield of the regction product

proportional to the third or the fourth power of time %.
The kinetics of the final stage is simopler still, where
-after the formation of a nractwcaITy plare front, the
quantity of the reaction product is directly propertional
to t. The enalyvsis of the intermediate period -- the
interpenetration of zones and their merging into one
front -~ represernts a f2irly complicsted prodblexm in the
theory of nrob°51] tv, which a= vet has not beern solved.

2. Kineiic equstions of the vrocess.

Considering the conversion of particles of suffi-
ciently large dimeneions, we may neglect the surface curv-
ature and consider them as p;anes toe agll intents and pur-
poses. _ '

Thus, in the limiting case, one mey conqwﬁer the
half-space bounded by the infinite plane, and filled with
an isotronpic, nomogenesus subsiance, CGV—ole of undergoing
& transforastion.

At the interface we have, 2 before, transforustion
centers snread on the surface with an avérage surfece den-
sity N, according to the conditions of the case, and

there mav also be forwed new cernters, whose probability
of formation, btaken per an:t area and unlt lee irterval,
we adopt as a

Let us cornsider an urblt"ﬂry noint ¥, which is at
& distance x from the interfsce. We shall define the pro-
bability of tre point ¥ finding itself in a2 transformation
zone at time t, which zone is propacated from sowe trans—
foriiation certers on the zrr’*ce, assuming that the trans-
foruation zore suvreads from the center spherically with a
constant linear velocity A . Naturally, an inequality
t > x/1 is velid, as in the case of t < x/A the point M,
in general, will not be in the reaction zone.
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e+~ Thus, we will‘ investi,at the ti
interval (t, t + 4t ae intervsl, only
thoss trean Sfﬁriftiﬁﬂ at the point # which,
firstly, propagats {7 n certers distributed
_with a‘sqrface densi umfervence of a circle

p . ' : 2.2
of radivs 2 = k¥
1); and secondly, fzo
radii satisfy the con

in the time interval v
from time t, but from 1
‘The probability of poi iz

9]
formation zone during bthe tiﬁ'
be equal to the sum of the pr:
the transformaticn zone propag
buted with a cowc*ant density

=

and the nrobahility of fallins intc the €
zZone DIroNELA : ' Tn® Lhe
dt, but & 13

However, the 3
trensformatiocr % 1
ity of the I onot W t
then the funcitl fixy 5 :
the point ¥ not undergoing transforumation at time (t + dt).
it follows that we may write an eguation
’ N i e -‘2 2 "). 2 ;
f(x,t + QL) = f{x,t){i w'“aﬁﬁgl.t f?TaQZ t° - x l7dt} .
Expsnding the left-hend side into & powsr series in dt,
we obbtain an eguation deternining the unknown function
Caf(x.t) e,e _
—-f?:"-fi-f-é—- = “_/_/._ 77'{1 /l—t + IT ’\’Z < - X2) 7d%.
LA -

§=




for £(x,t):

y o Pig. 1 | Fig. 2

Solving the last equation, we will obtain an expression

N T
=

X.‘G+'=;'X/,{,;7,

in whick the constant of inuegratlon ig found from the
obvicus expression f(xs x/2) = 1. %We have obtained the
DTOb“bL11uV of the point ¥ net uniderscing a transforma-
tion at cite t. The probanility of point M underg01ng 8
transformation at tiue t will be

P(x, t) = 1~ f(x,t) = 1»4 exn/:ﬁh ég(tgk. ‘/22) -

. A
n’ar)— (tﬁ - 3tx° /,Z2 + 2){5//25\ 7 . (-};)
3

Let uve distinguish an »LeAentary layer of height dx and
with bese ores of 1 cma, in which point K is contaired.
The volume of the substance undergoing transformation in
this layer at time t is equal to P(x,t)*1l cmc<dx, ard
the total voluume experiencing transforwation at time ¥,

calculzted for the unit surface area is:

At 1 |
- . . 2
v(t) = jr(x,t)dx = Atf1 - 5 exp[-:fr’noxzétdfl -z ) -
0 O
radt ‘iz ezt , (2

where 2z = /it.
In the vreceding dnbcuselon the quantity

P(x,t)-1 cmaaax is identified with the portion of the

5

£(x,%) = eXPZ:'f'-’nOZz (2 = 2/ "ﬁ'a(%ftﬁ. -
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'}snbstance whlch at "1% t urdrrgoes transformatlon ir a

.the finsel pavtﬁ cf tu~‘prccess.'

M
A

fvolume of 1 cn%. dX. ' .
The transfer 'gﬁiénzrate i%

%

' W(t) é:l’:\...z.=2{ - ex‘gf:rmclgt {li= z ) ﬂag?
‘ 0 : 1 ,_'. : A'
=.(1 - 52 o+ 3‘?&5} + ,24:{[_’2@01%(1 = 28y ga Py 2,

2" z it
(l - 52 + 22327eyp mrh ,{th(l - zd} _ ﬁaiat’ ;

C~~*_35- + 22 ;7 dz. ;f | ‘i.<§)

Tas evaluation of these integrals is not péssible
by convenyiongl means, znd 1t may be done apprcx;mately, :
‘only. It is expedient tc analyze firet the initial and

- .'..ﬁ)-’ * .
: ] u %
| £. PFree growth of sepsrabe zones. »
= Tn the initial part of the pracess, i.e., for small
. : o _ »
t@‘% —em— e b 3 /.....m,_. =t (&)
4" | R TV o ,-

Lone may exp&qd the fvnction under the integral sign in
‘expression (2), limiting it to the first three terms.
‘This approximation yields:

. ~ ’ -3: - S
s ~ 2 ? . 2 h 2 - al Ve 15, % \5
v(t) = % W A % FANE SV RV AR [1 = xg(=)7 /-
j _ s un " . E) e . j, ea J
S g;;:)? . (2
. The quantities mmn A7 ena ;ﬁaﬂ? ~ give the sum

£ the volumesz of all ﬂxowth Zonss ghemlspnere), formed

‘between the time ¥ = 0 and t = %, Taken per unit area.

TR

N
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\;

iTh° muit rl1ers 1 - glﬁ/t Y& oen 1 - 2 tft }5 a*ford a
kes

mt@ aceount, as a first approXi- .
wiion of these zoneszy the gquantity!
}lt(tft (t/tg)’ affords & correcticn which takes into



;account, as a first approxlmation, the 1ntersection of
.these zones which arise from centers of various types
.i(distrlbuted with & uniferm dersity and in forming).

; In the case oi n=0or a=0, we get

V(t’) Tap‘b ﬁ

:z:r

U,ar -

(6)

.In the first case ‘the inltlél growth of the_ product is
gproportional to t#, in the second case to t3 :

B. The formatlon of the front.»

For 1arge times, when t >t and t, , the evalua- :

;tion of the integral (2) may be ef;ected by using the so-
- .called "“pass method", which takes advantage of the fact
;that the function under the integrsl sign is appreciably L

,dlfferent from zerc conly in a small nelghborhood of the
:point 2 = 1. Thus, we insert in the ex pressaon under the

integral sign, 1 - 42 2(1 - 2z), 1 - 32 ¢ Zz‘ 2 3(1- 2)2
and we chusnge the lower integretion limit for an 1nflnite-
1y rémote point. After some calculatlons, we obtain:

f? tn Vi e
” v(t) ,Zt 1- [}é 3 -2° dz7exp(-——-t)

3t 3'55

@

‘The integral in the iast expression is equal, up to the
1limit of a constant, tc the function of Krasmp. As expres-

sion (7). is interestAng only -for *arge values of the argu-

ment, so using an asyrptotic expressxcn for the Kramp
;functlon, weE obtaln.
, 4 ‘t 4

3 3
’V.(t Nlt{l*?'( )2["1(-—*-:—) +l5(—t';?')" ...7!.%.'

<8y

From the. latter 1t is. seen that as tlme goes on, the ex-

- pression in the brackets (curly) tends to unity, and

gv(t)-erik ie., a flat front is_established, which spreads
with a unlform linear veloc1ty‘l. In the case when =

.

323 75 v(w) ;wn l5t5[1' 5( >27 |
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and, in t he parulaux*“ case whenn_ = 0, or a = 0

0
w(t) ¥ A+ —pge 3 w(E) ¥ A s . (1)
. a~at’ | 2Wﬁolt |
A3 is seen, for laprie tlmeu, the sverapge Iront in-
¢reases with s velocity slimhitly larzer than 2 This is
caused by the fact that L mrface of the real irent. to
which the transformation propagates perpendicularly, is
a1¢gr*l* 1zrger than the area ¢f the finsl plane front.
1 (
-~

From formu 10) and (12), and equally as well
from figure 3, it is seen tnat The velocity w(t) should
ottaln a maxizum value for some value of t.

T. Fomﬂ'p?e form of the curves (2) and (3).

of +he curves

Let us consiker the complete form
(2) ana (%) for two particular cases: for n ¢ and
a2 = 0. Irn this investigstioun it is co :vevm?nt to change
over to dimensionlisss varisbles. Thus, we shall obtain
universsal curves, for whicn ail exverimenial curves will
‘be obtained for differeny =, n. 5 and uby the mere change
of scale. In the canacity of s time 1pterxe1 we shall

i)

take the intervals introduced sbove o and ) during

‘which time the front of the nrusﬂaatlon ‘of the transforms-
‘tion establlches itself. The natural scale for the veloc-
ity w is, of course, i Here also, the natural scale for'
‘the volume will be eqnal to A‘caf, or /Ztn, :L.e., the volme
transforming per unii srss in the time t« and 1in, for the frcntal

propagation of traonsforzaticn with the linear velocity .
Thus, for L, o= 3, we introduce bthe dimensionless

variables 2/ .o ~
' : t «/’al v 5 i)

Zo o e = t Vi (s : :
| Tt 2 T— YR /2"14)

where the ex rreS‘;pns (2) snd (3) in these variables are:
3 _ :
{ > -_— A, .
£(T) =T i1 - Be"p_~2’(L - z)e(l 22) az)
1 { G . } |
r - - A \2'- ~ N
W) = 1 - Sexp/~79:1 -~ 2701 + ch_?dz + (15)
9 kN ' ‘ T
' :‘l ¢ b ] ‘2: 2 h/' ‘
5% ) (3 = 2)°(1 + 2a)exp /=1~ 21 + 22)/ds.
0.




The 1imit fgrm of expression (l 2} Witﬁ ulmenglor—
less variasbles will be:

. 5 5 L 1% 3
T ) T RYQ - 2T W - ”"?(1 - £ (18

55 2u ==
? : ‘_ "’
T2 (Y ¥ L =NESLR )3 -
T L &
'''' ¢ W) =1 +¥W/A8 Y2 . (D)

Tre result of the evaluz iQn cf she in ﬁ eral xﬂQ;

for all values is sncwn in table 1;.the corre spnnﬁ:n

‘gurves are given in fzguras 4 agnd : -

The velocity maximus lies at ?@ 1.341 arnd eqguz
1, - ' :

Pig. & : Fig

Yor s = U, intreducing a dimensicnless transforma-
ticn ‘ . ,

we obtain




&@) - 9{1 = 56:(‘23_{:@2{-1 -2y Jaz | Q)
| ) - | o

W@ =1 - *’; exp/~¢5(1 - 3 ) ez + c@2>(1 -z )@xp/'é
-4
5

Q
© '(i -z \7éz )

The limit values of the formulas (19) =nd (20):

p<€1; g@ 23071 - E67); v T2F - 5. (@
> gle) T E- ;‘-; W(O) = 1 4 —2m o - (22)
| ‘ z |

Results of the caé culations of the integrals (19) and (20)
are g"ven in tarle 2. Im this case the waXlimum n velocity
lies ab < 'm = 1.;60 znd is equel to W, = 1,285,

o3

TABLE 1 : TABLE 2

. Position ond maénitnd~"of the velocity maximum
> the geLev”T case.

we are irvestigating the change of the ve1001tv as
a function of time 1n two particuler cases, have core %o
the conclusion trat the velocity has & maximum, and have
found its weximum.

It is interesting, now, 10 find ocut where this max-
imum velccity shall Dbe. found in the gereral case, and
what its masnitude will be. Fer this, we will present




“the 1ntegral (2) and its llm % values (10) and (i2) 40"
the f0110w1ng Tornm:

WY =1 - »§exp[$3:,’"’?f<1 - 2 -z:5{1 - 2y (1 + 22)_Jdz +,

;5‘[?‘-!27'22{1'—‘ z‘?‘) + %Z;(Zt.-e-,l.;.z}z{l +’2z')__7e:: g:';? {?(_l - 22.)?

- - zﬁc’i -—‘z)'?(l 4 22) Jaz;  (23)
ot rK1 R
- E@I(l - %25 +7 (1’-» 25 2zarp 7 (24)
Tat ¥ 31

| w(y) =

4 ib._t TN E
l TN - s o]y 2 .
f’égz;z“z( .z';l‘z; “éi"z“g ) L??_

‘where 7} if a 41:95730r;esa pﬂrnmeaﬁr
P 4

Jomg L 5
= “é/ 3 —“25*- =TT (28)
a o

gdeflnlrg ube relatlwe desnsity of center of. tLe prsnagatlon
.of transformation (distributed wlfn a uniform density with
_respect to formatiop in timwe). It is éasily seen that fhe
parameter 7 connectr %b@«diuers;onlesu parameters intro- :

‘duced sbove Y and &, ac “especially 19'=5 L
: The result of tve ca leulation (%@ ard

‘W= ¥ (7) is prczwﬂ*ed in +aole'}.

Lom
= From table 3 it is seen that, if in addltlon to
‘forming centers of transformation with constant probzbili-
ity of incidence a, there are also transformation centers,
jdlstrlbuued with & uniform density n_, then the position ;
;of the maximum velocity tends toward® swaller values of
“argunent (, and its value becowes slightly less. If the
;quantlty a is small in comparison with n_, then the veloc-
ity maximum is determined by values of a?gument T clese
;to zero, and its magnit Lue is snghtlv dszerert from »
7the value w = 1. 28/. :

: s In the converse sztuatlon, if to the transformation
?centers dlstr;buted with constant density n, are added

iz
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experimentalily, For an ﬁ,se“ved velocity of propsgation
of: transformaticn, afier an apprecisdble amount of time has
elapsed since t} ng of tos precess, when already
to all invents viane front has been e€stab-

- W(t} .
”re veLoc*tv in the ';. period of the process enables

us to deterw1re n

ek t—r0 t°
In .tre case when n, = 0, similarly we obtain a:
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